Dominant Allele Phylogeny and Constitutive Subgenome Haplotype Inference in Bananas Using Mitochondrial and Nuclear Markers
نویسندگان
چکیده
Cultivated bananas (Musa spp.) have undergone domestication patterns involving crosses of wild progenitors followed by long periods of clonal propagation. Majority of cultivated bananas are polyploids with different constitutive subgenomes and knowledge on phylogenies to their progenitors at the species and subspecies levels is essential. Here, the mitochondrial (NAD1) and nuclear (CENH3) markers were used to phylogenetically position cultivated banana genotypes to diploid progenitors. The CENH3 nuclear marker was used to identify a minimum representative haplotype number in polyploids and diploid bananas based on single nucleotide polymorphisms. The mitochondrial marker NAD1 was observed to be ideal in differentiating bananas of different genomic constitutions based on size of amplicons as well as sequence. The genotypes phylogenetically segregated based on the dominant genome; AAB genotypes grouped with AA and AAA, and the ABB together with BB. Both markers differentiated banana sections, but could not differentiate subspecies within the A genomic group. On the basis of CENH3 marker, a total of 13 haplotypes (five in both diploid and triploid, three in diploids, and rest unique to triploids) were identified from the genotypes tested. The presence of haplotypes, which were common in diploids and triploids, stipulate possibility of a shared ancestry in the genotypes involved in this study. Furthermore, the presence of multiple haplotypes in some diploid bananas indicates their being heterozygous. The haplotypes identified in this study are of importance because they can be used to check the level of homozygozity in breeding lines as well as to track segregation in progenies.
منابع مشابه
Sequencing and Molecular Analysis of ATP 6 and ATP 8 of Mitochondrial Genome in Khorasanian Native Chickens
In order to perform breeding programs and improve production of native chickens, preserving genetic diversity in different areas of Iran is important due to the reduced available population. Genome sequencing is considered the most functional approach to determine the phylogeny relation between close populations. The aim of the present study was the evaluation of the phylogeny and genetic nucle...
متن کاملHaplotype Block Partitioning and tagSNP Selection under the Perfect Phylogeny Model
Single Nucleotide Polymorphisms (SNPs) are the most usual form of polymorphism in human genome.Analyses of genetic variations have revealed that individual genomes share common SNP-haplotypes. Theparticular pattern of these common variations forms a block-like structure on human genome. In this work,we develop a new method based on the Perfect Phylogeny Model to identify haplo...
متن کاملUGT1A1 gene linkage analysis: application of polymorphic markers rs4148326/rs4124874 in the Iranian population
Objective(s): Mutations in the UGT1A1 gene are responsible for hyperbilirubinemia syndromes including Crigler-Najjar type 1 and 2 and Gilbert syndrome. In view of the genetic heterogeneity and involvement of large numbers of the disease causing mutations, the application of polymorphic markers in the UGTA1 gene could be useful in molecular diagnosis of the disease. Materials and Methods: In the...
متن کاملGenetic Diversity and Molecular Phylogeny of Iranian Sheep Based on Cytochrome b Gene Sequences
Phylogenetic relationships and genetic variation between two Iranian sheep breeds were analyzed using cytochrome b (cyt-b) gene sequences. The genomic DNA was isolated by salting out method and amplified cytochrome b gene using polymerase chain reaction restriction (PCR) method with a pair of primer. A partial sequence of cyt-b gene of Iranian sheep is 780 bp and contained 13 variable sites and...
متن کاملGenetic relationships among collections of the Persian sturgeon, Acipenser percicus, in the south Caspian Sea detected by mitochondrial DNA Restriction fragment length polymorphisms
In the present study, mitochondrial DNA polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was used to assess the population structure and genetic relationships among six Persian sturgeon, Acipenser persicus populations from south Caspian Sea along the Iranian coast. The complete nucleotide dehydrogenase subunit 5 (NADH 5) region of mtDNA amplified by PCR was di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017